News & Events

Press Releases

NeoPhotonics Announces Suite of Products to Support 400G Coherent Transport for Long Haul, Metro and Data Center Interconnect Networks

High Speed Indium Phosphide Waveguide Photodector Based Coherent Receivers and Dual Output Ultra-Narrow Linewidth Lasers Pave the Way for Next Generation 400G Systems

VALENCIA, Spain--(BUSINESS WIRE)--Sep. 28, 2015-- NeoPhotonics Corporation (NYSE: NPTN), a leading designer and manufacturer of hybrid photonic integrated circuit based modules and subsystems for bandwidth-intensive, high speed communications networks, today announced a suite of products and technologies designed to support 400G and beyond optical transport across multiple network segments, including long haul, metro and data center interconnects (DCI). This suite includes high speed Indium Phosphide based waveguide photodetectors for coherent receivers with higher baud rate transmission, ultra-narrow linewidth lasers for higher order constallations such as 16QAM and 64QAM, dual output lasers for dual carrier architectures, and small form factor coherent components for high density line cards and pluggable coherent optics.

These products will be on display at the European Conference on Optical Communications (ECOC) in Valencia, Spain from September 28 to 30 (stand 500 in the Feria Valencia Convention and Exhibition Center).

NeoPhotonics 400G product and technology suite addresses each of the approaches for increasing transport bandwidth. Conceptually, the most straight forward path to increasing the bandwidth is to increase the symbol rate by increasing the raw speed of the optical system. NeoPhotonics Indium Phosphide based high speed waveguide photo-detectors can be incorporated in both monolithic and hybrid integrated coherent receivers and are capable of supporting symbol rates of 64 Gbaud, which is twice the standard 32 Gbaud in current 100G systems.

Higher baud rate transmission is best suited to Long Haul applications where higher data rates can be achieved without compromising system reach. The ICRs are configured in compact small form factor packages and, when coupled with NeoPhotonics Dual micro-ITLA, efficiently support dual carrier 400G implementations. The Dual micro-ITLA provides two independent, ultra-narrow linewidth, separately tunable, lasers in a form factor 25 percent smaller than separate micro-ITLAs and is well suited to dense linecards with either 400G or multiple 100G ports.

A second approach to increasing transport bandwidth is to use higher order modulation techniques to increase the number of bits per symbol. Thus using 16QAM doubles the number of bits transported compared to standard QPSK implementations, even though the underlying baud rate is unchanged, and 64QAM quadruples the data rate. Higher order modulation is often used for Metro and DCI, since the same optical components can support double or quadruple the data rate, although over a shorter reach. However, such higher order modulation schemes are more sensitive to both amplitude and phase noise since the separation between states is necessarily reduced, and therefore require the most stable, ultra-narrow linewidth laser sources. Inherent to their design, External cavity lasers have the narrowest linewidth in the industry, and the NeoPhotonics micro-ITLA exhibits typical linewidths of 20 kHz, resulting in high fidelity in higher order modulation. These lasers are available in single and dual micro-ITLA configurations and, when coupled with compact NeoPhotonics micro-ICRs, enable high density line card and pluggable module implementations.

“Just as our hybrid photonic integration technology is a mainstay in 100G coherent transport implementations, we are pleased to see our products and technologies enabling our customers as they move to 400G systems,” said Tim Jenks, Chairman and CEO of NeoPhotonics. “Moving from 100G to 400G coherent transport systems requires increased performance coupled with smaller size and lower power, which clearly demonstrates the power of our hybrid photonic integration,” continued Mr. Jenks.

Separately, for 400G datacenter and client applications, NeoPhotonics is presenting its very high bandwidth electro-absorptive modulated laser (EML) generating superior performance in use with High Order Modulation (HOM) systems. A joint demo with Inphi Corporation in Inphi’s stand 400 will demonstrate a full dual lambda 100G PAM4 solution based on Inphi’s PAM4 PHY IC and NeoPhotonics EML based Q-TOSA.

NeoPhotonics also will exhibit at ECOC its suite of standard and small form factor PIC-based components and its modular Multi-Cast Switches, both for 100G and 400G coherent line-side applications, along with its 100G client-side CFP2 and CFP4 transceivers and its next generation transceivers for access networks.

About NeoPhotonics

NeoPhotonics is a leading designer and manufacturer of hybrid photonic integrated optoelectronic modules and subsystems for bandwidth-intensive, high-speed communications networks. The Company’s products enable cost-effective, high-speed data transmission and efficient allocation of bandwidth over communications networks. NeoPhotonics maintains headquarters in San Jose, California and ISO 9001:2000 certified engineering and manufacturing facilities in Silicon Valley (USA), Japan and China. For additional information visit www.neophotonics.com.

Safe Harbor Statement Under the Private Securities Litigation Reform Act of 1995

This press release includes statements that qualify as forward-looking statements under the Private Securities Litigation Reform Act of 1995, including those related to industry trends and expected demand for Coherent and other high speed network applications. Readers are cautioned that these forward-looking statements involve risks and uncertainties and are only predictions based on the company’s current expectations, estimates and projections about their respective industry and business, management’s beliefs, and certain assumptions made by the company, all of which are subject to change and which may differ materially from actual future events or results. The actual company results and the timing of events could differ materially from those anticipated in such forward-looking statements as a result of these risks, uncertainties and assumptions. Certain risks and uncertainties that could cause the company’s results to differ materially from those expressed or implied by such forward-looking statements as well as other risks and uncertainties relating to the company’s business, are described more fully in the Company’s Annual Report on Form 10-K for the year ended December 31, 2014 filed with the Securities and Exchange Commission.

© 2015 NeoPhotonics Corporation. All rights reserved. NeoPhotonics and the red dot logo are trademarks of NeoPhotonics Corporation. All other marks are the property of their respective owners.

Source: NeoPhotonics Corporation

LouVan Communications Inc.
Michael Newsom, 617-803-5385
mike@louvanpr.com